martes, 25 de junio de 2013

BASE DE DATOS

Microsoft Access, también conocido como MSAccess, es un Sistema de gestión de bases de datos incluido en el paquete de programas de Microsoft Office. Es igualmente un gestor de datos que recopila información relativa a un asunto o propósito particular, como el seguimiento de pedidos de clientes o el mantenimiento de una colección de música. Si la base de datos no está almacenada en un equipo, o sólo están instaladas partes de la misma, puede que deba hacer un seguimiento de información procedente de varias fuentes en orden a coordinar y organizar la base de datos.

Archivos de base de datos de Access

Por medio de Microsoft Access, se puede administrar gran cantidad de información en un único archivo de base de datos. Dentro del archivo, se puede utilizar:

  • Tablas para almacenar los datos.
  • Consultas para buscar y recuperar únicamente los datos que necesita.
  • Formularios para ver, agregar y actualizar los datos de las tablas.
  • Informes para analizar o imprimir los datos con un diseño específico.
  • Páginas de acceso a datos para ver, actualizar o analizar los datos de la base de datos desde Internet o desde una intranet.
  • Almacenar los datos una vez en una tabla y 
Una base de datos o banco de datos es un conjunto de datos pertenecientes a un mismo contexto y almacenados sistemáticamente para su posterior uso. En este sentido, una biblioteca puede considerarse una base de datos compuesta en su mayoría por documentos y textos impresos en papel e indexados para su consulta. Actualmente, y debido al desarrollo tecnológico de campos como la informática y la electrónica, la mayoría de las bases de datos están en formato digital (electrónico), y por ende se ha desarrollado y se ofrece un amplio rango de soluciones al problema del almacenamiento de datos.
Existen programas denominados sistemas gestores de bases de datos, abreviado SGBD, que permiten almacenar y posteriormente acceder a los datos de forma rápida y estructurada. Las propiedades de estos SGBD, así como su utilización y administración, se estudian dentro del ámbito de la informática.
Las aplicaciones más usuales son para la gestión de empresas e instituciones públicas. También son ampliamente utilizadas en entornos científicos con el objeto de almacenar la información experimental.
Aunque las bases de datos pueden contener muchos tipos de datos, algunos de ellos se encuentran protegidos por las leyes de varios países. Por ejemplo en España, los datos perso

REDES

Capas del protocolo TCP/IP

Se han desarrollado diferentes familias de protocolos para comunicación por red de datos para los sistemas UNIX. El más ampliamente utilizado es el Internet Protocol Suite, comúnmente conocido como TCP / IP.
Es un protocolo DARPA que proporciona transmisión fiable de paquetes de datos sobre redes. El nombre TCP / IP Proviene de dos protocolos importantes de la familia, el Transmission Contorl Protocol (TCP) y el Internet Protocol (IP). Todos juntos llegan a ser más de 100 protocolos diferentes definidos en este conjunto.
El TCP / IP es la base del Internet que sirve para enlazar computadoras que utilizan diferentes sistemas operativos, incluyendo PC, minicomputadoras y computadoras centrales sobre redes de área local y área extensa. TCP / IP fue desarrollado y demostrado por primera vez en 1972 por el departamento de defensa de los Estados Unidos, ejecutándolo en el ARPANET una red de área extensa del departamento de defensa.



Modelo OSI

El modelo de referencia OSI es un modelo de los protocolos propuestos por OSI como protocolos abiertos interconectarles en cualquier sistema, básicamente se pretendía que los protocolos OSI fueran el estándar de la industria. Pero adivinen, no pasó, de hecho sólo unos pocos protocolos de los originales de OSI siguen siendo usados, por ejemplo IS-IS, un protocolo de enrutamiento. De los protocolos OSI sólo queda el modelo y como no hay protocolos en uso se le llama modelo de referencia, porque está tan bien definido que casi todas las tecnologías lo usan para que los usuarios sepan qué es lo que hace exactamente.
Entonces este modelo lo que hace es definir el proceso de comunicaciones completamente, dividirlo en funciones claramente demarcadas y ponerles nombre a esas funciones. Cuando un fabricante de tecnología de comunicaciones quiere poner en claro brevemente qué hace ésta sin definir su propia terminología ni las operaciones particulares de la misma, sólo dice con qué capas del modelo de referencia OSI se corresponde y ya, quien conozca éste último comprenderá inmediatamente qué hace la tecnología que está aprendiendo.




Tipos de Conexión por medios guiados y no guiados

Guiados:

• Fibra óptica: es el mejor medio físico disponible gracias a su velocidad y su ancho de banda, pero su inconveniente es su coste.
• Par trenzado: es el medio más usado debido a su comodidad de instalación y a su precio.
• Coaxial: fue muy utilizado pero su problema venia porque las uniones entre cables coaxial eran bastante problemáticas.

No guiados:

• Infrarrojos: poseen las mismas técnicas que las empleadas por la fibra óptica pero son por el aire. Son una excelente opción para las distancias cortas, hasta los 2km generalmente.
• Microondas: las emisiones pueden ser de forma analógica o digitales pero han de estar en la línea visible.
• Satélite: sus ventajas son la libertad geográfica, su alta velocidad…. pero sus desventajas tiene como gran problema el retardo de las transmisiones debido a tener que viajar grandes distancias.
• Ondas cortas: también llamadas radio de alta frecuencia, su ventaja es que se puede transmitir a grandes distancias con poca potencia y su desventaja es que son menos fiables que otras ondas.
• Ondas de luz: son las ondas que utilizan la fibra óptica para transmitir por el vidrio.


Tipo de topologias de red 

Topología en MALLA:


La topología de red mallada es una topología de red en la que cada nodo está conectado a todos los nodos. De esta manera es posible llevar los mensajes de un nodo a otro por distintos caminos. Si la red de malla está completamente conectada, no puede existir absolutamente ninguna interrupción en las comunicaciones. Cada servidor tiene sus propias conexiones con todos los demás servidores.





Topologia en BUS:

Una red en bus es aquella topología que se caracteriza por tener un único canal de comunicaciones (denominado bus, troncal o backbone) al cual se conectan los diferentes dispositivos. De esta forma todos los dispositivos comparten el mismo canal para comunicarse entre sí.






Topologia en ANILLO:

Una red en anillo es una topología de red en la que cada estación tiene una única conexión de entrada y otra de salida. Cada estación tiene un receptor y un transmisor que hace la función de traductor, pasando la señal a la siguiente estación.

En este tipo de red la comunicación se da por el paso de un token o testigo, que se puede conceptualizar como un cartero que pasa recogiendo y entregando paquetes de información, de esta manera se evitan eventuales pérdidas de información debidas a colisiones.





Topologia en ESTRELLA:

Una red en estrella es una red en la cual las estaciones están conectadas directamente a un punto central y todas las comunicaciones se han de hacer necesariamente a través de este. Los dispositivos no están directamente conectados entre sí, además de que no se permite tanto tráfico de información. Dada su transmisión, una red en estrella activa tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco.
Se utiliza sobre todo para redes locales. La mayoría de las redes de área local que tienen un enrutador (router), un conmutador (switch) o un concentrador (hub) siguen esta topología. El nodo central en estas sería el enrutador, el conmutador o el concentrador, por el que pasan todos los paquetes de usuarios.




Topologia MIXTA:

Las topologías mixtas son aquellas en las que se aplica una mezcla entre alguna de las otras topologías : bus, estrella o anillo. Principalmente podemos encontrar dos topologías mixtas: Estrella - Bus y Estrella - Anillo.



Topologia en ARBOL:

Chup La red en árbol es una topología de red en la que los todos están colocados en forma de árbol. Desde una visión topológica, es parecida a una serie de redes en estrella interconectadas salvo en que no tiene un modo central. En cambio, tiene un nodo de enlace troncal, generalmente ocupado por un hub o switch, desde el que se ramifican los demás nodos. Es una variación de la red en bus, la falla de un nodo no implica interrupción en las comunicaciones. Se comparte el mismo canal de comunicaciones.

La topología en árbol puede verse como una combinación de varias topologías en estrella. Tanto la de árbol como la de estrella son similares a la de bus cuando el nodo de interconexión trabaja en modo difusión, pues la información se propaga hacia todas las estaciones, solo que en esta topología las ramificaciones se extienden a partir de un punto raíz (estrella), a tantas ramificaciones como sean posibles, según las características del árbol.






Topologia de ANILLO DOBLE:

Topología de Anillo Doble Una topología en anillo doble consta de dos anillos concéntricos, donde cada host de la red está conectado a ambos anillos, aunque los dos anillos no están conectados directamente entre sí. Es análoga a la topología de anillo, con la diferencia de que, para incrementar la confiabilidad y flexibilidad de la red, hay un segundo anillo redundante que conecta los mismos dispositivos. La topología de anillo doble actúa como si fueran dos anillos independientes, de los cuales se usa solamente uno por vez.


Red por RELACIÓN FUNCIONAL:

Es aquella red que tiene relación con otras redes.

Cliente servidor:

La red Cliente/Servidor es aquella red de comunicaciones en la que todos los clientes están conectados a un servidor, en el que se centralizan los diversos recursos y aplicaciones con que se cuenta; y que los pone a disposición de los clientes cada vez que estos son solicitados.




Red peer-to-peer:

Una red peer-to-peer, red de pares, red entre iguales, red entre pares o red punto a punto (P2P, por sus siglas en inglés) es una red de computadoras en la que todos o algunos aspectos funcionan sin clientes ni servidores fijos, sino una serie de nodos que se comportan como iguales entre sí. Es decir, actúan simultáneamente como clientes y servidores respecto a los demás nodos de la red. Las redes P2P permiten el intercambio directo de información, en cualquier formato, entre los ordenadores interconectados.

Normalmente este tipo de redes se implementan como redes superpuestas construidas en la capa de aplicación de redes públicas como Internet.

El hecho de que sirvan para compartir e intercambiar información de forma directa entre dos o más usuarios ha propiciado que parte de los usuarios lo utilicen para intercambiar archivos cuyo contenido está sujeto a las leyes de copyright, lo que ha generado una gran polémica entre defensores y detractores de estos sistemas.

Las redes peer-to-peer aprovechan, administran y optimizan el uso del ancho de banda de los demás usuarios de la red por medio de la conectividad entre los mismos, y obtienen así más rendimiento en las conexiones y transferencias que con algunos métodos centralizados convencionales, donde una cantidad relativamente pequeña de servidores provee el total del ancho de banda y recursos compartidos para un servicio o aplicación.




Hardware de RED:

Unión RJ45: 

Esta contiene los 8 cables del RJ invertidos para permitir la unión de 2 exenciones de cable.
Unión POE: 

Es igual a la unión sencilla pero esta al igual q permite unir 2 extensiones de cable también transmite energía.

SWITCH:

Un conmutador o switch es un dispositivo digital lógico de interconexión de redes de computadoras que opera en la capa de enlace de datos del modelo OSI. Su función es interconectar dos o más segmentos de red, de manera similar a los puentes de red, pasando datos de un segmento a otro de acuerdo con la dirección MAC de destino de las tramas en la red.
Los conmutadores se utilizan cuando se desea conectar múltiples redes, fusionándolas en una sola. Al igual que los puentes, dado que funcionan como un filtro en la red, mejoran el rendimiento y la seguridad de las redes de área local.

ROUTER:

Un router —anglicismo también conocido como enrutador o encaminador de paquetes— es un dispositivo que proporciona conectividad a nivel de red o nivel tres en el modelo OSI. Su función principal consiste en enviar o encaminar paquetes de datos de una red a otra, es decir, interconectar subredes, entendiendo por subred un conjunto de máquinas IP que se pueden comunicar sin la intervención de un router (mediante bridges), y que por tanto tienen prefijos de red distintos.
DHCP (sigla en inglés de Dynamic Host Configuration Protocol, en español «protocolo de configuración dinámica de host») es un protocolo de red que permite a los clientes de una red IP obtener sus parámetros de configuración automáticamente. Se trata de un protocolo de tipo cliente/servidor en el que generalmente un servidor posee una lista de direcciones IP dinámicas y las va asignando a los clientes conforme éstas van estando libres, sabiendo en todo momento quién ha estado en posesión de esa IP, cuánto tiempo la ha tenido y a quién se la ha asignado después.

MODEM:

Un módem (del inglés Modulator Demodulator, pl. 'módems' con tilde)1 es un dispositivo que sirve para enviar una señal llamada moduladora mediante otra señal llamada portadora. Se han usado módems desde los años 60, principalmente debido a que la transmisión directa de las señales electrónicas inteligibles, a largas distancias, no es eficiente, por ejemplo, para transmitir señales de audio por el aire, se requerirían antenas de gran tamaño (del orden de cientos de metros) para su correcta recepción. Es habitual encontrar en muchos módems de red conmutada la facilidad de respuesta y marcación automática, que les permiten conectarse cuando reciben una llamada de la RTPC (Red Telefónica Pública Conmutada) y proceder a la marcación de cualquier número previamente grabado por el usuario. Gracias a estas funciones se pueden realizar automáticamente todas las operaciones de establecimiento de la comunicación.


TIA-EIA 568

TIA/EIA-568 fue desarrollado a través de los esfuerzos de más de 60 organizaciones que contribuyen incluyendo fabricantes, usuarios finales y consultores. Trabajo en el estándar comenzó con la Alianza de Industrias Electrónicas (EIA), una organización de estándares, para definir los estándares para los sistemas de cableado de telecomunicaciones. EIA acordó el desarrollo de un conjunto de normas, y formó el comité TR-42, con nueve subcomités para realizar el trabajo. El trabajo sigue siendo mantenido por TR-42 dentro de la Asociación de la Industria de Telecomunicaciones.
La primera revisión de la norma, TIA/EIA-568-A.1-1991 fue lanzado en 1991 y se actualizó en 1995. Las exigencias impuestas a los sistemas de cableado comerciales aumentaron dramáticamente durante este período debido a la adopción de las computadoras personales y las redes de comunicación de datos y los avances en estas tecnologías. El desarrollo de alto rendimiento de par trenzado de cables y la popularización de la fibra óptica cables también impulsó cambios significativos en las normas, que finalmente fueron superados por el conjunto TIA/EIA-568-C actual.

TIA-EIA 568 B

TIA/EIA-568-B tres estándares que tratan el cableado comercial para productos y servicios de telecomunicaciones. Los tres estándares oficiales: ANSI/TIA/EIA-568-B.1-2001, -B.2-2001 y -B.3-2001.
Los estándares TIA/EIA-568-B se publicaron por primera vez en 2001. Sustituyen al conjunto de estándares TIA/EIA-568-A que han quedado obsoletos.
Tal vez la característica más conocida del TIA/EIA-568-B.1-2001 sea la asignación de pares/pines en los cables de 8 hilos y 100 ohmios (Cable de par trenzado). Esta asignación se conoce como T568A y T568B, y a menudo es nombrada (erróneamente) como TIA/EIA-568A y TIA/EIA-568B.


TIA-EIA 568 A

NORMA EIA/TIA 568A
El propósito de esta norma es permitir la planeación e instalación de cableado de edificios comerciales con muy poco conocimiento de los productos de telecomunicaciones que serán instalados con posterioridad. También proporciona directivas para el diseño de productos de telecomunicaciones para empresas comerciales
ANSI/EIA/TIA emiten una serie de normas que complementan la 568-A, que es la norma general de cableado:
• Estándar ANSI/TIA/EIA-569-A de Rutas y Espacios de Telecomunicaciones para Edificios Comerciales. Define la infraestructura del cableado de telecomunicaciones, a través de tubería, registros, pozos, trincheras, canal, entre otros, para su buen funcionamiento y desarrollo del futuro.
• EIA/TIA 570, establece el cableado de uso residencial y de pequeños negocios.
• Estándar ANSI/TIA/EIA-606 de Administración para la Infraestructura de Telecomunicaciones de Edificios Comerciales.
• EIA/TIA 607, define al sistema de tierra física y el de alimentación bajo las cuales se deberán de operar y proteger los elementos del sistema estructurado.




Cable CRUZADO: 

Un cable cruzado es un cable que interconecta todas las señales de salida en un conector con las señales de entrada en el otro conector, y viceversa; permitiendo a dos dispositivos electrónicos conectarse entre sí con una comunicación full dúplex. El término se refiere - comúnmente – al cable cruzado de Ethernet, pero otros cables pueden seguir el mismo principio. También permite transmisión confiable vía una conexión ethernet.

El cable cruzado sirve para conectar dos dispositivos igualitarios, como 2 computadoras entre sí, para lo que se ordenan los colores de tal manera que no sea necesaria la presencia de un hub. Actualmente la mayoría de hubs o switches soportan cables cruzados para conectar entre sí. Algunas tarjetas de red les es indiferente que se les conecte un cable cruzado o normal, ellas mismas se configuran para poder utilizarlo PC-PC o PC-Hub/switch.

Para crear un cable cruzado que funcione en 10/100baseT, un extremo del cable debe tener la distribución 568A y el otro 568B. Para crear un cable cruzado que funcione en10/100/1000baseT, un extremo del cable debe tener la distribución Giga bit Ethernet (variante A), igual que la 568B, y el otro Giga bit Ethernet (variante B1).

Cable PARALELO:

El cable paralelo de red sirve para conectar dispositivos desiguales, como un computador con un hub o switch. En este caso ambos extremos del cable deben de tener la misma distribución. No existe diferencia alguna en la conectividad entre la distribución 568B y la distribución 568A siempre y cuando en ambos extremos se use la misma, en caso contrario hablamos de un cable cruzado.El esquema más utilizado en la práctica es tener en ambos extremos la distribución 568B.


Protocolos de RED

Token RING:

Token Ring es una arquitectura de red desarrollada por IBM en los años 1970 con topología física en anillo y técnica de acceso de paso de testigo, usando un frame de 3 bytes llamado token que viaja alrededor del anillo. Token Ring se recoge en el estándar IEEE 802.5. En desuso por la popularización de Ethernet; actualmente no es empleada en diseños de redes.

Fast Ethernet:

Fast Ethernet o Ethernet de alta velocidad es el nombre de una serie de estándares de IEEE de redes Ethernet de 100 Mbps (megabits por segundo). El nombre Ethernet viene del concepto físico de ether. En su momento el prefijo fast se le agregó para diferenciarla de la versión original Ethernet de 10 Mbps.
Debido al incremento de la capacidad de almacenamiento y en el poder de procesamiento, los Pc’s actuales tienen la posibilidad de manejar gráficos de gran calidad y aplicaciones multimedia complejas. Cuando estos ficheros son almacenados y compartidos en una red, las transferencias de un cliente a otro producen un gran uso de los recursos de la red.
Las redes tradicionales operaban entre 4 y 16 Mbps. Más del 40 % de todos los Pc’s están conectados a Ethernet. Tradicionalmente Ethernet trabajaba a 10 Mbps. A estas velocidades,dado que las compañías producen grandes ficheros, pueden tener grandes demoras cuando envían los ficheros a través de la red. Estos retrasos producen la necesidad de mayor velocidad en las redes.
Fast Ethernet no es hoy por hoy la más rápida de las versiones de Ethernet, siendo actualmente Gigabit Ethernet y 10 Gigabit Ethernet las más veloces.

ETHERNET:

Ethernet es un estándar de redes de área local para computadores con acceso al medio por contienda CSMA/CD. CSMA/CD (Acceso Múltiple por Detección de Portadora con Detección de Colisiones), es una técnica usada en redes Ethernet para mejorar sus prestaciones. El nombre viene del concepto físico de ether. Ethernet define las características de cableado y señalización de nivel físico y los formatos de tramas de datos del nivel de enlace de datos del modelo OSI.
La Ethernet se tomó como base para la redacción del estándar internacional IEEE 802.3. Usualmente se toman Ethernet e IEEE 802.3 como sinónimos. Ambas se diferencian en uno de los campos de la trama de datos. Las tramas Ethernet e IEEE 802.3 pueden coexistir en la misma red.

GIGABIT ETHERNET:

Gigabit Ethernet, también conocida como GigaE, es una ampliación del estándar Ethernet (concretamente la versión 802.3ab y 802.3z del IEEE) que consigue una capacidad de transmisión de 1 gigabit por segundo, correspondientes a unos 1000 megabits por segundo de rendimiento contra unos 100 de Fast Ethernet (También llamado 100BASE-TX).

ATM:

El Modo de Transferencia Asíncrona o Asynchronous Transfer Mode (ATM) es una tecnología de telecomunicación desarrollada para hacer frente a la gran demanda de capacidad de transmisión para servicios y aplicaciones.

Norma TIA 942

En abril de 2005, la Telecomunication Industry Association publica su estándar TIA-942 con laintención de unificar criterios en el diseño de áreas de tecnología y comunicaciones. Este estándar que en sus orígenes se basa en una serie de especificaciones para comunicaciones y cableadoestructurado, avanza sobre los subsistemas de infraestructura generando los lineamientos que sedeben seguir para clasificar estos subsistemas en función de los distintos grados de disponibilidadque se pretende alcanzar.

La norma TIA-942 es un estándar que describe los requerimientos que deberían ser consideradospara implementar la infraestructura de un data center.

Basado en recomendaciones del Uptime Institute, establece cuatro niveles (tiers) en función de laredundancia necesaria para alcanzar niveles de disponibilidad de hasta el 99.995%.

El más simple es un centro de nivel 1 (Tier 1), que es básicamente una sala de servidoressiguiendo las directivas básicas para la instalación de sistemas informáticos. El nivel más estrictoes el 4 (Tier 4), que está diseñado para albergar los sistemas informáticos más críticos. Otraconsideración es la ubicación del centro de datos en un entorno subterráneo para garantizar laseguridad de los datos, así cómo las condiciones ambientales como por ejemplo la refrigeración. A su vez divide la infraestructura soporte de un datacenter en cuatro subsistemas a saber:

 Telecomunicaciones
 Arquitectura
 Sistema eléctrico
 Sistema Mecánico




REQUERIMIENTOS TECNICOS PARA WINDOWS 7,8 Y XP


REQUISITOS DEL SISTEMA WINDOWS 7

Si desea ejecutar Windows 7 en su equipo, necesitará:
Procesador de 32 bits (x86) o 64 bits (x64) a 1 gigahercio (GHz) o más.
Memoria RAM de 1 gigabyte (GB) (32 bits) o memoria RAM de 2 GB (64 bits).
Espacio disponible en disco rígido de 16 GB (32 bits) o 20 GB (64 bits).
Dispositivo gráfico DirectX 9 con controlador WDDM 1.0 o superior.
Requisitos adicionales para usar ciertas funciones:
Acceso a Internet (puede tener costes adicionales).
Según la resolución, la reproducción de vídeo puede requerir memoria adicional y hardware gráfico avanzado.

REQUISITOS DEL SISTEMA DE WINDOWS 8

Si deseas ejecutar Windows 8 en el ordenador, esto es lo que necesitas:
Procesador: 1 gigahercio (GHz) o más rápido, compatible con PAE, NX y SSE2 (más información)
RAM: 1 gigabyte (GB) (32 bits) o 2 GB (64 bits)
Espacio en disco duro: 16 GB (32 bits) o 20 GB (64 bits)
Tarjeta gráfica: Dispositivo gráfico Microsoft DirectX 9 con controlador WDDM

REQUISITOS TECNICOS PARA WINDOWS XP

Los requisitos mínimos para instalar Windows XP según Microsoft son:

- Procesador 233 MHz (recomendado de 300 MHz o superior) Intel Pentium/Celeron o AMD K6/Athlon/Duron o compatible.
- 128 MB de RAM o más (mínimo 64 Mb, pero con limitación de rendimiento y algunas características)
- 1,5 Gb disponibles en el disco duro
- Adaptador de vídeo Super VGA (800 × 600) o de mayor resolución
- Unidad de CD-ROM o DVD